N 69 30242
NASA CR10;§82

SPACE RESEARCH COORDINATION CENTER

u NIVE}RSITY
PITTSBURGH

Q\\\'//é

BOUNDS FOR THE NATURAL FREQUENCIES
OF A PLATE SUBJECTED TO A THERMAL
GRADIENT

BY

G. FAUCONNEAU AND R. D, MARANGONI

DEPARTMENT OF MECHANICAL ENGINEERING

SRCC REPORT NO. 95

| UNIVERSITY OF PITTSBURGH
PITTSBURGH, PENNSYLVANIA

7 MARCH 1969



The Space ResearchCoordination Center, established in May, 1963, has the following functions; (1) it ad-
ministers predoctoral and postdoctoral fellowships in space-related science and engineering programs; (2) it makes
available, on application and after review, allocations to assist new faculty members in the Division of the
Natural Sciences and the School of Engineering to initiate research programs or to permit established faculty
members to do preliminary work on researchideasof a novel character; (3) inthe Division of the Natural Sciepces
it makes an annual allocation of funds to the interdisciplinary Laboratory for Atmospheric and Space Sciences;
(4) in the School of Engineering it makes a similar allocation of funds to the Department of Metallurgical and
Materials Engineering and to the program in Engineering Systems Management of the Department of Industrial
Engineering; and (5) in concert with the University's Knowledge Availability Systems Center, it seeks to assist
in the orderly transfer of new space-generated knowledge in industrial application, The Center also issues pe-
riodic reports of space-oriented research and a comprehensive annual report,

The Center is supported by an Institutional Grant (NsG-416) from the National Aeronautics and Space Ad-
ministration, strongly supplemented by grants from the A. W. Mellon Educational and Charitable Trust, the
Maurice Falk Medical Fund, the Richard King Mellon Foundation and the Sarah Mellon Scaife Foundation. Much
of the work described in SRCC reports is financed by other grants, made to individual faculty members,



BOUNDS FOR THE NATURAL FREQUENCIES OF A PLATE

SUBJECTED TO A THERMAL GRADIENT

by

G. Fauconneau

R. D. Marangoni

Department of Mechanical Engineering

University of Pittsburgh



I.
IT.
I11.

Iv.

TABLE OF CONTENTS

Summary
Nomenclature
Introduction
Formulation of the Problem
Method of Solution
a. Upper Bounds

b. Lower Bounds

Results and Discussion
References
Appendix A
Table 1 - Upper Bounds
Table 2 - Lower Bounds

Figure 1 - Effeet of Thermal Gradient on
Fundamental Eigenvalue Ratio

Figure 2 - Effect of Thermal Gradient on
Second Eigenvalue Ratio

Figure 3 - Effect of Thermal Gradient on
Third Eigenvalue Ratio

Appendix B

Table 3 - Upper and Lower Bounds for the
Eigenvalues of a Rectangular Plate
With Linear Modulus Variation

ii

O N N W e

14
17
19
20
21

22

23

24

25

26



ACKNOWLEDGEMENTS

The authors wbuld like to express their gratitude

to Mr. D. A. Weyel for his assistance.



SUMMARY

The effect of a constant thermal gradient on the ftransverse
vibrational frequencies of a simply supported rectangular plate
is investigated. Bounds for the eigenfrequencies are obtained
for various plate width-to-length ratios as functions of a para-
meter related to the temperature dependence of the modulus of
elasticity of the material. The upper bounds are calculated by
the Rayleigh-Ritz method and the lower bounds by the Bazley-Fox
Second Projection method. In all instances, the gap between the

bounds over their average is less than one half of one per cent.
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NOMENCLATURE
Latin Symbols

a Length of the plate
a,; Constants of linear combination, equation (III-29)
a“;/.b Matrix elements, equation (IIT-18)

o Width of the plate

\O,;S Matrix elements, equation (III1-22)

Ci Constants of linear combination, equation (ITII-1)
D(x) Flexual rigidity variation, equatioﬁ (I1-1)

Do Domain of the operator L

o\,;é Matrix elements, equation (III-23)

(= Modulus of elasticity

H Hilbert space

L Differential operator, equation (IT-14)

\_° Self-adjoint differential operator, equation (III-8)
L’. Self-adjoint positive definite operator, equation (I1I-10)
L\f' Intermediate operator, equation (III-17)

ff)h Intermediate operator, equation (IIT-21)

P Circular frequency of motion, equation (II-7)

'\3& Independent elements of D’

r Parameter, equation (II-11)

T Temperature excess above a given reference

W Function

W Function in Dy,

'\M%%,’Q Deflection of the plate

M Non dimensional coordinate

X Actual coordinate in the plane of the plate

—\é’ Coordinate perpendicular to % in the plane of the plate



Greek Symbols

¢
¥
B

")

N

o
A
Y
r\j‘?k

P Y
v’k\:\

4

.
i

0

24
th,h
b

iii

Parameter, equation (II-3)

Slope of the variation of E with T

Positive number, equation (III-21)

Kronecker delta

Eigenvalue of

Eigenvalue of

Eigenvalue of

Eigenfunction
Eigenfunction

Eigenfunction

the operator L

o
the operator L, equation (III-13)

R
the operator ‘-

of the operator L
of the operator L? equation (I1I-12)

) H
of the operator L*®

Poisson's ratio



I. INTRODUCTION

The response of structures subjected to thermal environments is
affected by the development of thermal stresses and by the deteriora-
tion of the materials of construction. The problem of the effect of
temperature on the modulus of elasticity is far from being negligible
to aircraft and rocket designers, for instance, because for such materials
as titanium alloys the modulus may be half of its room temperature value
at lDOOOF.(l)* Other materials are also affected, and experimental
investigations(1’2’3’q’5) have shown that a linear relationship between
Young's modulus and temperature provides a good correlation for most
engineering materials. Thus, in the presence of steady thermal gradients,
the elastic coefficients of homogeneous materials become functions of the
space variables. The determination of vibiational characteristics of
continuous elastic systems must then be based on non-homogeneous elastic
theory.

Although the problem has long beéen recognized, few solutions appear
., in the literature. In particular, few attempts have been made at the
determination of natural frequencies of plates with variable flexural
rigidity. The existing solutions are usually conceprned with plates of

vapiable thickness(ﬁ_ll)

, but not with material-induced variable rigidities.
The object of this study is to determine the effect of the non-

homogeneity caused by a thermal gradient on the natural frequencies of

a free,simply supported plate of uniform thickness. A steady temperature

distribution is considered in one direction. Any viscoelastic effects

are considered negligible in comparison with the induced non-homogeneity

#Parenthetical references placed superior to the line of the text refer
to the bibliography.



effects. Bounds for the eigenfrequencies are computed by the Rayleigh-
Ritz method and the Bazley-Fox Second Projection method as functions
of a parameter associated with the severity of the thermal gradient and

the temperature dependence of the material's modulus of elasticity.



IT. FORMULATION OF THE PROBLEM

Consider a rectangular plate of uniform thickness h, length a,
and width b, subjected to a steady one-dimensional temperature distribu-
tion 'T=13(LM> where T denotes the temperature excess above the
reference temperature at any point x, TO denotes the temperature excess
above the reference temperature at the end X=a , and N=,37QL

For most engineering materials, the temperature dependence of the

modulus of elasticity is given by a relation of the type

E(T)= E,(1-pT) N
where
E, is the value of the modulus at some reference temperature
T is the temperature excess above the reference temperature

ﬁ is the slope of the variation of E with T
Taking as the reference temperature, the temperature at the end

of the plate x = a, the modulus variation becomes

E:E\Xl-x(\—rx)l (II-2)

where the parameter ™ is defined by

o(;(;To (ogxg) (I11-3)

The flexural rigidity of the plate can now be written as

D(x) = Dq \1(&4&-%& (II-W)

where

3
Do Euh (1I-5)
\2 (- v¥)



The known differential equation for the deflection W(&,g ;*—-\ of a

vibrating plate with flexural rigidity D(;)-(,T'a) is

Ry, A QT éz-ci YT E%L
2 Ly v (R e
VY T R 4w ot (11-6)
For harmonic vibrations, W has the form
W(R,5,0 = w(&,g) Ma pt (1I-7)

where p is the circular frequency of the motion.
Separation of the variables F( and 'g , i.e. the search for solutions

of the form

wW(%,3)= a;’;'\&.) Y13) (11-8)

yields, for simple supports,

Wv\: An A:&\A.L.Ei. (1I-9)

and the differential equation for cx)

\t-w((\-lx)} &ﬁ A0 w‘ﬂ*zxv‘ﬁ’-v" M’} = C*J (11-10)

A A At Ad A%
where
T = “WRo. (I1-11)
b
and >\ & ¢ \q PL (II-lZ)



The boundary conditions for simple supports are

cb:.@ﬁ:o ok Xzo ) M=y (11-13)
Ank

The problem of the determination of the plate natural frequencies consists
now of the solution of the eigenvalue problem corresponding to equations
(I1-10) and (II-13).

The differential operator will be represented by L, i.e.

Ly =N (1I-13)

Consider the Hilbert space H of real square integrable functions defined

on {o,\} , with the inner product (uqv) defined by

\

(w,v) = x WA 4y (II-15)
0

for any two functions u and v in H.

The domain of L in H, D1, consists of the set of functions of class Cq
satisfying the boundary conditions (II-13). As integration by part shows,

L is self adjoint over its domain, i.e.

(Lu, )= () (II-16)
for every pair u and v in Dy,.
Since over Dy, L is positive definite, i.e.

i

(Lu,uﬁ} T X l-«(\-@}{\_%)l +l‘r"(ﬂ}2‘+ ‘(‘AU}}A‘X 20 (11-17)

- ax/

with the equality sign holding only for u = o, the eigenvalues >~ are



known to be positive and to tend to infinity with no finite limit point.

They are assumed to be ordered in increasing order of magnitude

O ( ’>\\ g r>\2.'$ ,>\$ A (II—]_S)
and the corresponding eigenfunctions @L are assumed to he normalized

to satisfy

§ @;) m\ia 8&‘5 A1) 21,20 (I1-19)

In the following section, the method of solution of the eigenvalue

problem is described.



ITI. METHOD OF SOLUTION

Since exact solutions to equation (II-10) are not known, approximate
solutions must therefore be sought. The number of techniques to estimate
eigenvalues of self-adjoint operators that have appeared in the literature
is enormous. (See for instance references 12,13,14%,15). 1In this study,
the Rayleigh-Ritz method was used to calculate upper bounds to the desired
eigenvalues, and the Bazley-Fox Second Projection method to compute lower
bounds. The theoretical foundations for these methods have appeared in
the literature, and consequently only the details needed for their applica-
tion to the problem on hand are presented. TFor mathematical proofs, the

reader is referred to references 12 through 16.

a. Upéer Bounds
The basic idea of the Rayleigh-Ritz method consists in determining
the stationary values of the Rayleigh quotient, (j_u,u>//iu,u)3
not over all admissible functions u , but only over the linear manifold
spanned by n linearly independent functions W, satisfying the prescribed
boundary conditions of the operator L. The problem then consists in

finding the functions wu of the form

n
i.e. in finding the constants C. , making the Rayleigh quotient

stationary. The result is the general matrix eigenvalue problem

Uu; | Lu'h)}[cﬂ : 7} "(u;) V"S)}\fﬂ (I11-2)

Since the class of admissible functions is restricted to the linear

-

manifold, it follows that the eigenvalues 3\\ are upper bounds for

3



those of L, i.e.

'>\é, < '>a é:\,z.n- o (I11-3)

Furthermore, it follows that as /. increases the upper bounds are
improved, or at least not worsened.

For the problem under consideration, these functions were chosen to be
\A"?‘\I-Z‘ Aaw AT % (I1I-4)
which satisfy the boundary conditions (II-13), and are such that
(s, ug) = B (I11-5)
Evaluation of the inner products needed in equation (III-2) yields

: : Ca '
‘\'M‘L.u.‘a o %0" *-#‘é)(a.‘.é)mw

1

- T N N W Y S A o o
- ‘8"((&5) \:_‘an.{zﬁ -;;‘;':! {0+ by )-\-\" 1 i\w o#h ) (Aiﬂ 933 S
Pl -
= (\- ‘iﬁ)\{&“)’# ‘_7_'}2 %ar iz

These expressions were substituted in equation (III-2), and the

y
¢

resulting matrix eigenvalue problem was solved numerically for various
values of the parameter o and of the length-to-width ratio, a/b, for
15 x 15 matrix sizes. The improvement in the upper bounds with iIncreasing’
matrix size is illustrated in Table 1 where the results correspond to

the value ofw=9.80.



b. Lower Bounds
The computation of lower bounds presents considerably more diffi-
culties. The outline of the Bazley-Fox Second Projection method is
presented here. For details of proofs or construction of the needed
operators, the reader is referred to reference 16. /

s

Consider the operator I, as the sum of two operators v and

such that
!
8
L= L7 & L (I11-7)
o
where - is the self-adjoint operator
4 1
o, Ay, P ) 4
[l 5 (_&»N}X A AT T SV (I11-8)
L dadt Ant

with boundary conditions

!
W= atu, =0 xsz X=0 2 A K= (I11-9)
At
’
and N is the operator
L tn 4
Ve &Lyx@i}wlwr‘i\xﬂl+ XY XA (I1I-10)
MLL PV A Ay
with the boundary conditions given by equation (III-9). L/ can be
easily shown to be self-adjoint and positive definite.
The eigenvalue problem for L , namely
0
L2 c%:“ S 4>° (III-11)

o
is readily solvable. The normalized eigenfunctions Cb& are

t}\f = {2 um inx (ITI-12)



10.

and the corresponding eigenvalues are

s e T o 0% I1I-13
/\;:'\1—»4) Plam)y s |- (111-13)

i
(N

Comparison of the Rayleigh quotients for L and L° indicates that

(v u) € (Luuw) (ITI-14%)

for all functions u in the coinciding domains of L and 1°.

Congequently, their ordered eigenvalues satisfy the inequalities

n \ .
™ < ™ , AT, (II11-15)
AQ . .
The lower bounds MNia are, however, gquite remote from the desired
eigenvalues. To improve them, intermediate operators Lk are
constructed so that they have the same domains as 1° and their eigen-
values satisfy the inequalities

Q ) i .
f:h < %\ < A ™ fxi. RS T I (I1I-16)

}

Considering k linearly independent vectors belonging to the domain of

/ . .
L » the k-th intermediate operator is given by

R, hok ,
s Luy z ZQ:A (%{, LDé)L . (III-17)
Az ¥
where the elements a;a are the entries of the following matrix

.- (o ﬂ-t |
La,d = \~"”‘ Bas £;) (I11-18)

J
-

Having chosen the linearly independent vectors as

0 . .
Paz (#); = V2 hwamy (I11-19)

the inner proeducts take the forms



11.

Went) = (tuaywy)  joa#

(I11-20)
(‘*‘“\’I*Ti ’ -KN A=
where the expressions for L.M&,ué) are given by equation
(I11-6).
To avoid the difficulties associated with the solution of the
eigenvalue problem for Lk, Bazley and Pox(lﬁ) have introduced smaller
operators for which the problem reduces to a finite linear algebraic

Y

préblem. These operators are denoted by L% . They are given by

L u \.A“-ﬂ W + Z E_ \o~é (u,%)(b (IT1I-21)

azt &-—l
where ¥ is a positive number whose optimum value for the determina-
‘L,h. &k]h

‘ 0
tion of '>\'B is such that ’)‘Q“-‘l = %6 . Since 5 is

not known, ¥ must be chosen from an estimate of it, which for this prob-
lem was taken as %é . This choice, therefore, tends to give a lower
bound for %é slightly smaller than the value obtainable from the
optimum X

The matrix [ELSX is the inverse of the matrix with elements
&k
Y_\, \ diy - Z ?_ (d?: U fm) Awa (U P, Cb; )‘X (I111-22)
el =1

where {A\m“] is the matrix inverse to that with elements

[Awmr = K.(L,Pm , \.'9“) + ¥ (b, ?V‘)} (I11-23).

Its evaluation requires the following inner products, in addition to

those given in equation (III-20):
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(Voo vpy)=

BRI \ AR B
(-9 (& = 32) (=) (3 -a‘) -
o k4

,,(7"}\: NS Kz(&w}"-’s] + \[&;;‘ s P k

(\—o() 12 (s (1-n0) 2 -0t AN

isd
Lk

The eigenvalues of (W can be shown to satisfy the inequalities

W 1 L,k k
}>\L! ¢ N ¢ sl (III-25)

The solution of the eigenvalue problem

1‘& h‘u Lk
5\ ‘b (III-26)
is now accomplished as follows: ;
! ‘L“Q .
1. 1If o) is orthogonal to the span of % ¢f }ir: ,
then the problem reduces to
Lk ﬁ ¥
- ]C}e (I11-27)

which has solution

%er P L (I1I-28)
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R L
2. 1If (b \ is in the span of { 4)? }v , it can be

y oArt
written as
L

é;)i"nz za\m é;& (I11-29)

sl
which upon substitution in equation (III-26) and consideration of the

linear independence of the eigenfunctions of L° yields the matrix

eigenvalue problem

| \_(’>~i~—‘€) Biy v \c;é - 'XQ"QBQY\LO.A < \o

Lk

The eigenvalues of L are then obtained by ordering the results

. ‘ (IT11-30)
y A\é;“lz'“ 'é'

PR

of equations (III-28) and (I1I-30).

Computations were perfdrmed for various values of the parameter &
and of the length-to-width ratio, a/b, for \YQ: ia=\5'. The results
presented in Table 2 illustrate the improvement in the lower bounds
as the sizes of the intermediate operators are increased. The results

shown correspond to o= 0,50,



1h.

IV. RESULTS AND DISCUSSION

The following procedure was used in the calculation of the eigen-
frequencies of the plate subjected to a thermal gradient, For a
given a/b ratio, and for a given value of & , the bounds for the
eigenvalues tk in equation (II-10) were computed for fixed values
of the parameter ¥ defined in equation (II-11). They were obtained
by letting the order ™ take the discrete values 1 through 10 success-
ively. The upper bounds were computed using 15 x 15 matrix sizes and
the lower bounds were calculated for intermediate operators with

%: L-15 . Consequently, a sequence of eigenvalue problems (one

for each value of r) were solved to take into account the possible
combinations of mode shapes in the x~ and y-directions. For a given
value of the a/b ratio and a given value of & , the results were
arranged in two matrices, one for the upper bounds and one for the lower
bounds, giving the approximations to the eigenvalues of the plate for
the order of the mode shapes in the x- and y-directions. It was then
possible to order by inspection the eigenfrequencies in ascending orders
of magnitude.

In all instances, the Rayleigh-Ritz method coupled with the Bazley-
Fox Second Projection method yielded excellent results since the gaps
between the bounds over their average remained less than one half of one
per cent.

The effect of the temperature gradient on the first three
eigenvalues of the plates is illustrated in Figures 1 through 3 for
values of the a/b ratio equal to 055, 1.0, 1.5, and 2.0. The ratio

of each eigenvalue to the corresponding eigenvalue of the plate at the
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reference temperature is presented as a function of the a/b ratio and of
the parameter ol which represents the severity of the thermal gradient
and of the temperature dependence of the plate modulus of elasticity.
Comparison between the variations of the three eigenvalues indicates
that the effect of the thermal gradient depresses the higher harmonics
faster than the fundamental. This conclusion appears to be valid for
harmonics of higher orders too.
of particuiar interest is the phenomenon illustrated in Figure 3

by %he Vériation of the third eigenvalue for the square plate.
As shown on the figure, the third eigenvalue for a/b = 1.0 is
much lower than the third eigenvalue corresponding to the other length-
to-width ratios. Furthermore, the point JXS,/%3&‘Q = 1.00 is a
point of discontinuity. The explanation for this phenomenon is as
follows: for the plate at the reference temperature, i.e. for K = 0.0,
the second eigenvalue corresponds indifferently to the combination of the
first mode in the x-dirvection and the second mode in the y-direction,
or to the combination of the second mode in the x-direction and the first
mode in the y-~direction. For instance, for o( = 0.0 and a/b = 1.0,

sz = 2U35.227. The third eigenvalue in this case corresponds to
the combination of the second modes in the x- and y-directions. It
has the value 0\3 = 6234.181. 1In the presence of the thermal gradient,
however, the rigidity of the plate in the x-direction is weakened.
Consequently, the second eigenvalue of the reference plate "branches off™"
to yield two frequencies: the combination of the first mode in the
x-direction with the second mode in the y-direction yields C\Z , while
‘the combination of the second mode in the x-direction with the first mode

in the y-direction yields CKS . For instance, for a/b = 1.0, A = 0.1,
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/)\Z = 2312.092 and ?\3 = 2312.318. Hence the third eigenvalue is
quite remote from the third eigenvalue of the reference plate. This
phenomenon is also exhibited by plates with other length-to-width ratios
for harmonics of orders higher than three.

The results presented here apply only to a linear temperature
distribution. In themselves, they should be of value to designers of
équipment subjected to thermal gradients. Furthermore, since in many
instances the temperature distribution can be approximated by a linear
variation, they can be useful in estimating the effect of other gradients
on the natural frequencies of simply supported plates.

The method of solution can be used for other temperature variations.
The main difficulty in the lower bounds method resides in splitting the

differential operator so that a convenient base problem results.
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Effect of Thermal Gradient on Fundamental Eigenvalue Ratio
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Effect of Thermal Gradient on Third Eigenvalue Ratio

24



APPENDIX B

25



Table 3 - Upper and Lower Bounds for the Eigenvalues of a Rectangular
Plate with Linear Modulus Variation

= 0.00
a’/b Order Upper Bounds Lower Bounds
1 152.20 152.20
0.5 2 389.64 389.64
3 1028.88 1028.88
1 389.64 389.64
1.0 2 235,23 2U435.23
3 6234.18 6234,18
1 1028.88 1028.88
1.5 2 3805.04 3805.04
3 9740.91 9740.91
1 2U435.23 2435.23
2.0 2 6234.18 6234.18
3 16,462.13 16,462.13
™ =0.10
a/b Order Upper Bounds Lower Bounds
1 144.53 144,38
0.5 2 369.99 369.34
3 976.95 976.14
1 369.99 369.34
1.0 2 2312.09 2311.81
3 2312.32 2312.10
1 976.95 976.14
1.5 2 3613.06 3613.02
3 9245.68 9244.75
1 2312.09 2311.81
2.0 2 5919.81 5919.59
3 15.631.10 15,630.95




X = 0.20
a/b Order Upper Bounds Lower Bounds
1 136.74 - 136.50
0.5 2 349.99 349.45
3 923.95 923.20
1 349.99 349.45
1.0 2 2185.90 2185.63
3 2186.85 2186.59
1 923.94 923.20
1.5 2 3417.23 3417.12
3 8732.24 8731.36
1 2185.90 2185.63
2.0 2 5589 .50 5599.36
3 14.,782.41 14,782.23
X =0.30
a/b Order Upper Bounds Lower Bounds
1 128.79 128.67
0.5 2 329.58 329.07
3 869.65 868.91
1 329.58 329.07
1.0 2 2056.67 2055.81
3 2058.35 2058.09
1 869.65 868.91
1.5 2 3216.80 3216.70
3 8197.19 8196.31
1 2056 .07 2055.81
2.0 2 5272.12 5271.94
3 13.912.65 13,912.51
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% = 0.40
a/b Order Upper Bounds Lower Bounds
1 120.66 120.52
0.5 2 308.64 308.15
3 813.79 813.06
1 308.64 308.15
1.0 2 1921.81 1921.59
3 1926.13 1925.91
1 813.79 813.06
1.5 2 3010.77 3010.73
3 7636.10 7635.33
1 1921.81 1921.59
2.0 2 4936.10 4935.88
3 13.017.19 13.016.99
® = 0.50
a/b Order Upper Bounds Lower Bounds
1 112.30 112.15
0.5 2 287.07 286.62
3 755.98 755.29
1 287.07 286.62
1.0 2 1782.02 1781.82
3 1789.27 1789.09
1 755.98 755.29
1.5 2 2797.73 2797 .66
3 7042.87 7042.21
1 1782.02 1781.82
2.0 2 14589.26 4589.15
3 12,089.49 12,089.25
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X = 0.60
a/b Order Upper Bounds Lower Bounds
1 103.64 103.50
0.5 2 2614.66 264.20
3 695.64 695.02
1 264.66 264,20
1.0 2 1635.08 1634.92
3 16U6.36 1646.18
1 695.64 695.02
1.5 2 2575.56 2575.47
3 6408.79 6408.13
1 1635.08 163u4.92
2.0 2 14228.28 4228.08
3 11.119.66 11.119.29
X =0.70
a/b Order Upper Bounds Lower Bounds
1 94,57 oL, U6
0.5 2 2u41.13 240.69
3 631.85 631.27
1 241,13 240.69
1.0 2 1478.40 1478.23
3 1495,15 1494.91
1 631.85 631.27
1.5 2 2340.80 2340.67
3 5720.39 5719.75
1 1478.40 1478.23
2.0 2 38u47.77 3847.54
3 - 10,091.52 10.,090.82




X = 0.80
a/b Order Upper Bounds Lower Bounds
1 84.92 8u4.78
0.5 2 215.93 215.52
3 562.96 562.42
1 215.93 215.52
1.0 2 1307.29 1307.11
3 1331.47 1331.19
1 562.96 562.42
1.5 2 2087.13 2086 .89
3 4954.18 4953.50
1 1307.29 1307.11
2.0 2 3437.71 3437.35
3 8975.01 8973.34
& = 0.90
a/b Order Upper Bounds Lower Bounds
1 74.26 74.13
0.5 2 187.90 187.52
3 485.32 4gy.78
1 187.90 187.52
1.0 2 1111.40 1111.06
3 1145.89 1145.16
1 485.32 48L.78
1.5 2 1799.96 1799.05
3 4058.98 4057.33
1 1111.40 1111.06
2.0 2 2974.86 2973.43
3 7699.54 7691.90
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X = 1.00
a/b Order Upper Bounds Lower Bounds
1 61.11 60.95
0.5 2 152,73 152.33
3 385.11 384.51
1 152.73 152.33
1.0 2 850.67 850.25
3 900.23 899.62
1 385.11 384.51
1.5 2 1419 .57 1418.62
3 2833.56 2381.78
1 850.67 850.25
2.0 2 2361.99 2360.38
3 5969.26 5961.03
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